ASSIGNMENT SET - I

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

B.Sc Hon. (CBCS)

Mathematics: Semester-II

Paper Code: C4T
[Differential Equations and Vector Calculus]
Answer all the questions

1. Define fundamental set of solutions for system of ordinary differential equation.
2. Let $\mathrm{W}(\mathrm{f}, \mathrm{g})$ be the wronskian of two linearly independent solutions f and g of the equation $\ddot{W}+P(z) \dot{W}+Q(z) W=0$. Then find the value of product of $\mathrm{W}(\mathrm{f}, \mathrm{g}) \mathrm{P}(\mathrm{z})$.
3. Show that o is the regular singular and 1 is the irregular singular points of the differential equation $(z-1) \ddot{W}(z)+(\cot \pi z) W(z)+\operatorname{cosec}^{2} \pi z W(z)=0$
4. Show that $\frac{d y}{d x}=3 y^{\frac{2}{3}}, y(0)=0$ has more than one solution and indicate the possible reason.
5. Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solution of $x^{2} \ddot{y}-2 x \dot{y}-4 y=0$,forall x in $[0,10]$ consider the Wronskian $\mathrm{W}(\mathrm{x})=y_{1}(\mathrm{x}){y_{2}}^{\prime}(\mathrm{x})-y_{1}{ }^{\prime \prime}(\mathrm{x}) y_{2}(\mathrm{x})$. If $W(1)=1$ then find the value of $W(3)-W(2)$?
6. Find the series solution near $\mathrm{z}=0$ of $2 z^{2} W^{\prime \prime}(z)+z W^{\prime}(z)-(z+1) W(z)=0$

Using the fact that $y=x^{2}$ is a solution of the ordinary differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=0, x>0$, find the another independent solution.
7. Solve the differential equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\cos e c a x$.
8.Find the solution of the differential equation $\left(y^{\prime \prime \prime}-y^{\prime \prime}+3 y^{\prime}-y\right)=e^{x} \cos 2 x$.
9. A function satisfied the differential equation $\frac{d^{2} N}{d x^{2}}-\frac{N}{L^{2}}=0$ where L is constant. The boundary conditions are $N(0)=k$ and $N(\infty)=0$. Then Find the solution of the above solution.
10. Find the particular integrals of the ODE : $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=3 e^{2 x}$,
11. Find the steady state point of $\frac{d y}{d x}=e^{x-1}-1$ and $\frac{d y}{d x}=y e^{x}$
12. Discuss about the stability of the following system of differential equations; $\frac{d y}{d x}=-x+y$ and $\frac{d y}{d x}=4 x-y$
13. Discuss about the stability of the following system of differential equations; $\frac{d y}{d x}=x+2 y$ and $\frac{d y}{d x}=x^{2}+y$
14. Determine the steady state and their stability of the differential equation $\frac{d y}{d x}=f(y)=y^{2}-5 y+6$.
15. Solve $\quad x z^{3} d x-z d y+2 y d z=0$
16. Solve $3 x^{2} d x+3 y^{2} d y-\left(x^{3}+y^{3}+e^{2 z}\right) d z=0$
17. Show that $(y+z) d x+(z+x) d y+(x+y) d z=0$ is exact and homogeneous. Hence solve it.
18. Show that $f(x, y)=x y^{2}$ on $\mathbb{R}:\{|x| \leq 1,|y| \leq 1\}$ satisfying a Lipschitz condition. But this function does not satisfy a Lipschitz condition on the strip S : $\{|\mathrm{x}| \leq 1$, $|y| \leq \infty\}$.
19. Solve the following system of differential equations;

$$
\frac{d y}{d x}+4 x+3 y=t, \quad \frac{d y}{d x}+2 x+5 y=e^{t} .
$$

20. Find the fundamental matrix and complementary solution of the homogenous linear system of differential equations : $\frac{d x}{d t}=3 x+y$,

$$
\frac{d y}{d t}=x+3 y .
$$

21. Solve : $(1+3 x)^{2} \frac{d^{2} y}{d x^{2}}-6(1+3 x) \frac{d y}{d x}+6 y=8(1+3 x)^{2},-\frac{1}{3}<x<\infty$
22. Find the power series solution of the equation $4 x^{2} y^{\prime \prime}(x)+2 x y^{\prime}(x)-(x+4) y=0$ in power of x.
23. If $\vec{U}, \vec{v}, \quad \vec{W}$ be three mutually perpendicular unit vectors such that $\vec{V} \times \vec{W}=\vec{U}$ then prove that $\vec{v}=\vec{W} \times \vec{U}_{\&} \vec{W}=\vec{U} \times \vec{v}$
24. Given that $\quad \vec{r}=a \cos \vec{U} \quad \hat{i}+a \sin U \quad \hat{j}+b U \quad \hat{k}$ show that $[\vec{r} \vec{r} \vec{r}]$ is independent of ' U '
25. Derive the volume of a tetrahedron whose co-ordinates of vertices are given. Use it to calculate the volume of the tetrahedron whose vertices are $A(2,-1,4), B(4,2,3), C(3,2,-1), D($ 1,2,3).
26. Let r_{1} and r_{2} be the roots of the indicial polynomial for the equation $\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0$
Where a, b are constents. If $r_{1} \neq r_{2}$, then show that two independent solutions are $e^{r 1 x}, e^{r 2 x}$ on [a, b]

Hence deduce that $y_{1}=e^{-2 x}$, and $y_{2}=e^{-3 x}$ are two independent solution of the above ODE if $a=5 \& b=6$
27. Apply the method of variation of parameter to solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$
28. Knowing that $y=x$ is a solution of the ODE $x^{2} \frac{d^{2} y}{d x^{2}}-x(x+2) \frac{d y}{d x}+(x+2) y=0(x \neq 0)$
Reduce the equation
$x^{2} \frac{d^{2} y}{d x^{2}}-x(x+2) \frac{d y}{d x}+(x+2) y=x^{3}(x \neq$
0)to a differential equation of $1^{\text {st }}$ order $\& 1^{\text {st }}$ degree and final its complete primitive.
29.Solve

$$
(1+3 x)^{2} \frac{d^{2} y}{d x^{2}}-6(1+3 x) \frac{d y}{d x}+16 y=8(1+3 x)^{2}, \frac{1}{3}<x<\square
$$

30. The wronskian of two solutions of the equation $a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0, a_{0}$ $(x \neq 0), x$ belongs to $[\mathrm{a}, \mathrm{b}]$ is either Identically zero or never zero on $[a, b]$
31. Find the fundamental and complete solution of the homogeneous system of $\operatorname{ODE} \frac{d x}{d t}=3 x+y$ and $\frac{d y}{d t}=x+3 y$
32. Solve $\frac{d x}{d t}+4 x+3 y=t$ and $\frac{d y}{d t}+2 x+5 y=e^{t}$
33.Solve
$\left(D^{2}+1\right) x+(D+1) y=t, 2 x+(D+1) y=0$ with $x=y=$ 0 , at $t=0$
33. Find the phase curve of the system of dyanamical equation $x=-x-2 y$ and $y=2 x-y$. Also show that the system is stable.
34. Find the solution of the $4 x^{2} y^{\prime \prime}(x)+2 x y^{\prime}(x)-(x+4) y=0$ in power of x.
35. Find the power series solution of the equation in power of x $\left(x^{2}-1\right) y^{\prime \prime}+4 x y^{\prime}+3 x y=0$, given that $y(0)=5, \mathrm{y}^{\prime}(0)=7$.
36. Find the general solution of the homogeneous equation $\frac{d \vec{x}}{d t}=\left(\begin{array}{ccc}1 & -2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2\end{array}\right) \vec{x}$ where $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
37. Find the general solution of the homogeneous equation $\frac{d \vec{x}}{d t}=\left(\begin{array}{ccc}1 & -2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2\end{array}\right) \vec{x}$ where $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
38. Define fundamental set of solutions and fundamental matrix for system of differential equations.
39. Determine whether the matrix $\quad B=\left(\begin{array}{ccc}e^{4 t} & 0 & 2 e^{4 t} \\ 2 e^{4 t} & 3 e^{4 t} & 4 e^{4 t} \\ e^{4 t} & e^{t} & 2 e^{4 t}\end{array}\right)$

Is a fundamental matrix or not? Justify your answer.

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad A=\left(\begin{array}{ccc}
1 & -3 & 9 \\
0 & -5 & 18 \\
0 & -3 & 10
\end{array}\right) .
$$

41. Define fundamental set of solutions for system of ordinary differential equation.
42. What is meant by singularity of a linear ordinary differential equation?
43. Find the regular singular point of the ODE : $x(x-1) y^{\prime \prime}+(\sin x) y^{\prime}+2 x(x-1) y=0$.
44. Discuss Frobenious method of finding the series solution about the regular singularpoint at the origin for an ODE of 2 nd order when the roots of the indicial equation are equal.
45. Find the series solution near $\mathrm{z}=0$ of $\left(z+z^{2}+z^{3}\right) \ddot{W}(z)+3 z^{2} \dot{W}(z)-2 W(z)=0$

Find the general solution of the $\operatorname{ODE} 2 z w^{\prime \prime}(z)+(1+z) w^{\prime}(z)-k w=0$. (where k is a real constant) in series form. For which values of k is there a polynomial solution?
46. Find all the singularities of the following differential equation and then classify them: $\left(z-z^{2}\right)^{2} \omega^{\prime \prime}+(1-5 z) \omega^{\prime}-4 \omega=0$.
47. Define a self-adjoint differential equation with an example.
48. Find all the singularities of the following differential equation and then classify:

$$
z^{2}\left(z^{2}-1\right)^{2} \omega^{\prime \prime}-z(1-z) \omega^{\prime}+2 \omega=0
$$

49. Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solution of

$$
x^{2} \ddot{y}-2 x \dot{y}-4 y=0, \text { forall } \mathrm{x} \text { in }[0,10] \text { considertheWronskian } \mathrm{W}(\mathrm{x})=
$$ $y_{1}(\mathrm{x}) y_{2}{ }^{\prime}(\mathrm{x})-y_{1}{ }^{\prime}(\mathrm{x}) y_{2}(\mathrm{x})$. If $W(1)=1$ then find the value of $\mathrm{W}(3)-W(2)$?

50. Let $w_{1}(z)$ and $w_{2}(z)$ be two solutions of $\left(1-z^{2}\right) w^{\prime \prime \prime \prime}(z)-2 z w^{\prime \prime}(z)+(\sec z) w=0$ with Wroinskian $\mathrm{w}(\mathrm{z})$. If $w_{1}(0)=1, w^{\prime \prime}(0)=0$, and $\mathrm{w}\left(\frac{1}{2}\right)=\frac{1}{3}$, then find the value of $w_{2}^{\prime}(z)$ at $\mathrm{z}=0$.
51. Prove that $[(\vec{\alpha} \times \vec{\beta})(\vec{\beta} \times \vec{\gamma})(\vec{\gamma} \times \vec{\alpha})]=[\vec{\alpha} \vec{\beta} \vec{\gamma}]^{2}$.
52. State the lipschitz condition for function $f(x, y)$ on D
53. State the picard theorem for existence and uniqueness for $\frac{d y}{d x}=f(x, y)$ with $\mathrm{y}(\mathrm{x})=\mathrm{y} 0$. Also show for $\frac{d y}{d x}=\frac{1}{y}, y(0)=0$, has more than one solution indicate the possible reason.
54. If $y(x)=x^{2} \sin x$ is a solution of an n-th order linear ODE $y^{n}(x)+a_{1} y^{(n-1)}(x)+\ldots \ldots \ldots+a_{(n-1)} y(x)+a_{n} y(x)=0$ with real constant coefficients, then prove that the least possible value of n is 6 .
55. Show that the solution of the ODE $\frac{d x}{d t}=2 x+y \& \frac{d y}{d t}=3 x$ satisfy the relation $3 x+y=K e^{3 t}$.where K is a real constant.
56. Find the equilibrium point for the system of equations $\dot{x}=2 x+7 y$ and $\dot{y}=x^{2}+3 y$.
57. Find the ordinary \&singular point of the ODE $3 x^{2} y^{\prime \prime}+7 x(x+2) y^{\prime}-4 y=0$.
58. Show that $x=0$ is a ordinary point and $x=2$ is a regular singular point of the ODE $x(x-2) y^{\prime \prime}+(\sin x) y^{\prime}+2 x(x-2) y=0$.
59. Find the P. I of the ODE $\left(D^{4}+2 D^{2}-4\right) y=e^{2 x}$.
60. Show that the general solution of the ODE with constant coefficient $y^{\prime \prime}+b y^{\prime}+c y=0$ approaches to zero as $x \rightarrow \infty$ if both $b \& c$ are positive.
61. Show that the vector type equation here $F=(2 x-y z) \hat{\imath}+(2 y-z x) \hat{\jmath}+(2 z-x y) \hat{k}$ is irrational.
62. Prove that the $\vec{\nabla}^{2} f(x)=\frac{d^{2} t}{d r^{2}}+\frac{2}{r} \frac{d t}{d r}$ wherer $=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$.
